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Andoyer variables [l] are used to investigate the problem of existence of per- 
iodic motions of a rigid body with a fixed point in the gravity field of two sta- 
tionary centers. 

I.. Consider the motion of a rigid body about a fixed point 0, in the Newto- 

nian gravity field of two fixed centers kf, and Ma- We introduce the following coor- 
dinate systems: OXYZ is a stationary coordinate system chosen so that the cen- 

ters of attraction M, (Xi, 0, 0) and MS (X2, 0, 0) lie on the ox-axis and 
the fixed point 0, (0, Yo, 9) of the body M lies on the OY -axis; Olxyz is a 
coordinate system with the origin at the fixed point Or, the axes of which are parall- 

el to the axes of the OXYZecoordinate system; O&l 5 is a moving coordinate 
system the axes of which are directed along the principal axes of inertia of the body ,kr 

with respect to the fixed point. We described the motion of the body using the Andoyer 

elemenis 

L, G, H, 1, g. IL 

Here G denotes the magnitude of the vector G of the moment of momentum of 

the body rotation; L and H are the projections of the vector G on the O,&axis 

and &z-axis of the body, respectively; , 1 is the angle counted from the line of inter- 

section of the intermediate plane P normal to the vector G with the ol&l pl- 

ane of the body, to the O,g -axis; h is the angle counted from the 0,x--axis to 

the line of intersection of the O,#xy_ plane and the plane P, g is the angle between 

the line of intersection of the plane GY and the plane P, g is the angle between 

the line of intersection of the planes p, O,.$l and the line of intersection of the pl- 

anes P, O,xyy. 
The motion in question is determined by the Hamiltonian 

msm 
Ps=f R2 , s=1,2 

s 
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here f is the gr~~~~~~ conshnt, m is the mass of the body, @k and % 
are tile masses of the fixed centers of attraction; A, B and C are the prinicpal 
moments of inertia of the body for the fixed point or; RI and R, are the corr- 
esponding distances from the centers M, and MS to the fixed point UI; as, PS 
and yS ace the direction cosines of the line MsOr in the moving coordinate system 

0,&G f,, % and 5, are the coordinates of the center of mass of the body in the 
Oz& 5 -coordinate system. 
Let us find the force function of the problem, depending explicitly on the Andoyer 

elements (1. I). Using the formulas for the unperturbed motion [Z], we express the dir- 
ection cosines as, B,, YS in terms of the Andoyer elements. After the transforma- 
tions we obtain the force function in the form of a trigonometric series. We assume that 
the body is almost axisymmetric and its fixed point lice near its center of mass, In this 
case the Hamiltonian fL 2) can be written in the form which allows the application of 
the Poincar6 method of small parameter [3] 

Here a, is the Hamiltonian defining the generating so&&t&r and @C, is the perturb- 
ing Hamiltonian. 

The following quantity serves as the small parameter 

FL = JnaX 
1 

/A- BI A i? (C cc % $c 
-- 

A ’ mY,Z ( mY*S ’ mU,z’ r,t r,* r, 1 

Here YO is the coordinate of the pomt OX in the OXYZ -coordinate system. 
Let us write the simplified system of equatibns of motion 

.L’ =i 0, G’=O, If’==0 

Its general solution has the form 

L = Lo = Con&, C = Go = Const, H -5. Ho = const @*4) 
1 = n,t + Jo, It = n2t + go, h = ho 

A-C 
n,=~Lo; 

Go ?Js=- A 

The solution (1.4) will be periodic if for any integers kI and ks we have k,n, = 
k2ns. 

The period of the generating solution is 

fl. 5) 

2, We shaI1 prove the existence of periodic solutions with the period (1.5) of 
the system of equations with the Hamiltonian (1.3), coinciding with the generating so- 
lution at p =: 0. 
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In accordance with the PoincarBs theory of periodic solutions, the equations of mo- 
tion with the Hamiltonian (1.3) admit Tcperiodic solutions for small values of the 
parameter &, provided that the corresponding generating solutions satisfy the follow- 
ing group of conditions: 

AI (Ko) # 0 (2.1) 

Here d, is the Hesse determinant of Ks relative to Go and Lo, and Aa is the 
Hesse determinant of f&f relative to lot ha and rr,. The first condition holds for 

any generating solution when A f c, since 

TO 2l;lja.q &e rem&&g conditions, we must calcutite the v&e of [1Y, f. Ihe following 
cases are possible: 

1k,l=lk,l; lk,l=l, Ihl-2 
IhI=: 2, lbl= 1: lkl+ lk,l&*4 

For f 4 i -k 1 k, [ > 4, 1 fez ] & 2 the fast condition of (2.1) fails since [Xl1 is inde- 
pendent of ho and go. In this case the search for the existence of periodic solutions 
necessitates the inclusion of terms of higher order of smallness in the expansion of the 
force function. We shall limit ourselves to the case of commensurability with 9 = k,. 

We assume that the centers &r and MS are of equal mass and are situated at the 

complex conjugate distances 

%= 4 z m0, XI,* = _t id, d = Con&, i = r/-1 

As we know [4,5], the force function can in this case approximate, with a high degree 
of accuracyI the potential of a spheroid. We shall also assume that the center of mass 

of the body M coincides with the fixed point U%,. 
Under these assumptions we obtain 

El,[Kl’j = ';&jB ~Oz-4"~ +(x1+ yOw2"of 

(2.Q 
( 

where 
c;,, = (B - A) Ml + cosa 6) (1 + co@ p)1 + 

(C - A) [“/a sins 0 (I + co@ p) + I/% sins p toss 01 
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The second condition of (2,l) can now be easily written in the explicit form. As the res- 
ult, we find the generating values of the angular variables 

(2.3) 

Using the above values, we transform the third equation of (2, I) to the form 
(2.4) 

fi (0) cos p = 0 

where ye, MI and M, are known constants. Equation (2.4) is certainly satisfied_ when 

P=n/2. The solution p = zx j 2 together with the solution ho = 0, 7~ / 2, 
x, 3s j 2 admits a simple geometrical interpretation: the vector G is either parall- 

el, or perpendicular to the segment x&s “The last condition of (2, I) becomes 

(2.5) 

8 
fx (6) fe (6) SW ~#0, fe(0) = Nzsin4-$ + N, sin2 -+% 

The coa?taEtS No, JV, and & are also known, The condition (2,5) fails at a finite 
number of points. It fails at 8 = 0, and at the points given by the equation 

fl f% 64 = 0 

Thus we have shown that in the case in question the problem of motion of a rigid bo- 
dy about a fixed point in the gravity field of two fixed centers admits a family of perio- 
dic Poicar6 solutions. In the generating solution we can choose arbitrarily the magnitu- 
de G of the vector G, the projection L of the vector G on the ID axis 
of the body, the value of the elements 0,~ and the initial instant of time, 
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