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Andoyer variables [1] are used to investigate the problem of existence of per-
iodic motions of a rigid body with a fixed point in the gravity field of two sta-
tionary centers,

1, Consider the motion of a rigid body about a fixed point Oy in the Newto-
nian gravity field of two fixed centers M; and Mz We introduce the following coor-
dinate systems; O0XYZ is a stationary coordinate system chosen so that the cen-
ters of attraction M, (X4, 0, 0) and M, (X,, 0, 0) lie on the (O Xx-axis and
the fixed point 0, (0, ¥, 0) of the body M lies on the OY -axis; Oyzyz is a
coordinate system with the origin at the fixed point 0,, the axes of which are parall-
el to the axes of the OXYZ.coordinate system;  0,Enf  is a moving coordinate
systemn the axes of which are directed along the principal axes of inertia of the body M
with respect to the fixed point. We described the motion of the body using the Andoyer
elements

LG H, 1 g h (1.1)

Here G denotes the magnitude of the vector G of the moment of momentum of
the body rotation; . and H are the projections of the vector G on the 0, G-axis
and 0yz-axis of the body, respectively; .l is the angle counted from the line of inter-
section of the intermediate plane P normal to the vector G  with the O:8n  pl-

ane of the body, to the 0:§ -axis; h  is the angle counted from the 0O,z~axis to
the line of intersection of the Oyzy. plane and the plane P, g is the angle between
the line of intersection of the plane 01zy and the plane Pp, g is the angle between

the line of intersection of the planes p (,&y;  and the line of intersection of the pi-
anes P, Ol.z'y.
The motion in question is determined by the Hamiltonian

K=T-—-U,—1U, (L.2)
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Here [ is the gravitational constant, m is the mass of the body, m; and ™
are the masses of the fixed centers of attraction; 4, B and € are the prinicpal
moments of inertia of the body for the fixed point 0,; R; and Ry are the corr-
esponding distances from the centers M, and M, to the fixed point 0y; as, Bs
and s are the direction cosines of the line M,0, in the moving coordinate system
0.5l & ne and &, are the coordinates of the center of mass of the body in the
0,En¢ -coordinate system.

Let us find the force function of the problem, depending explicitly on the Andoyer
elements (1, 1), Using the formulas for the unperturbed motion [2], we express the dir-
ection cosines s, fis, ¥s in terms of the Andoyer elements, After the transforma-
tions we obtain the force function in the form of a trigonometric series. We assume that
the body is almost axisymmetric and its fixed point Hes near its center of mass, In this
case the Hamiltonian (1, 2) can be written in the form which allows the application of
the Poincaré method of small parameter [3]

G2 2 L2 (1.3)
K= Ky4 pK,;,, Ky= 54 B

A—B
K = 5 (G2 — L2)costl — Uy— U,

Here [, is the Hamiltonian defining the generating solution and pX; is the perturb-
ing Hamiltonian,
The following quantity serves as the small parameter
{[A—-Bl A B c & M }g_}
W= max A ' Y @E ' mY2 mYe' Y, ' Y, Y
Here Y, is the coordinate of the point 0, inthe QXYZ -coordinate system,
Let us write the simplified system of equations of motion

L'=0, G'=0, H=0

A—C 6
P=—pg L &=, k=0

Iis general solution has the form
L = L, = const, G = G;=const, H = H, = const (1.4)

l=nmt+l, g=rnt+ gy h=h

A—C Gy
=g Lo m=—jx

The solution {1, 4) will be periodic if for any integers ky and % we have kyny =
kynsy-
The period of the generating solution is

(1.5)
T =20k, [ ng = 2nk; | 1y

2. We shall prove the existence of periodic solutions with the period (1, 5) of
the system of equations with the Hamiltonian (1,3), coinciding with the generating so-
lution at p == 0.
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In accordance with the Poincaré's theory of periodic solutions, the equations of mo~
tion with the Hamiltonian (1.3) admit I'~pericdic solutions for smail values of the
parameter #, provided that the corresponding generating solutions satisfy the follow-
ing group of conditions;

Ay (Ko) =0 (2,1
d[K,]  01K,] -0 a[K,l
90— Ok — O “am, =0

T

SKD£0, (K= | K
0

Here A, is the Hesse determinant of K, relativeto Go and Lo, and B2 s the
Hesse determinant of [E;] relativeto L, by and H, The first condition holds for

any generating solution when 4 4 ¢, since
4 ~C
Ay (Kp) = A

To assess the remaining conditions, we must calculate the value of [X,]. The following
cases are possible:

[kl =1k [R]l=1 |k|=2
Phl=2, [kl=1 |k|+|k|>4

For |k i1k |>4, 1% |>2 the last condition of (2, 1) fails since [K;] is inde-
pendent of ke and go. In this case the search for the existence of periodic solutions
necessitates the inclusion of terms of higher order of smallness in the expansion of the
force function. We shall limit ourselves to the case of commensurability with &y = k,.
We assume that the centers M; and M, are of equal mass and are situated at the
complex conjugate distances

my = my == me, Xjg= tid, d=const, i= Y —1

As we know [4, 5], the force function can in this case approximate, with a high degree
of accuracy, the potential of a spheroid. We shall also assume that the center of mass
of the body M coincides with the fixed point 0.
Under these assumptions we obtain
A—B
B (K] =~ (G — L) + (4 + Yobea) oo +
(3 4 Yo2rg) C3 _y 4 €08 280 + (%1 — YoPg) €08 2ho +
{y — YoPy) Cé_wg.g 08 (280 — 2he} -+ (%1 — Yo%y) 0;,_2,_&2 c08 {28, -+ 2h,)

{2.2)

where
Coop = (B — A) [}s(1 + cos? 8) (1 -+ cos? p)] +
(C — A) [1, 5in2 0 (1 -+ cos? p) 4 3/, sin® p cos? 6]
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Cloy = Us (A — B) sin® p (sin? 8 — 2c08? 0) -+ Y/, (4 — C) (2—3 sin? 6)
Cip.0= Y18 (4 — B) sin? p (1 — cos 6)?
Chg.42= /s (4 —B)sin®0/2 (1 + cosp)?

3d%m ® S
%y == f Rsos ”2““‘_&%'"» R='VY02'—‘d2

cos8@=G/L, ecosp=GlH

The second condition of (2, 1) can now be easily written in the explicit form, As the res-
ult, we find the generating values of the angular variables
(2.3)

7 3 % 3n
Iy =0; g0=i}t-2"'s“:”§'“; kg"—“{),"é",ﬁ;_f'

Using the above values, we transform the third equation of (2, 1) to the form
(2.4
f1@cosp =0
F1(@) = M,sin®8/2-+ M,s1n?8/2+ My

where My, My and M, are known constants. Equation (2,4) is certainly satisfied. when
p=um/2 The solution p =m/2  together with the solution kg = 0, n / 2,
n, 3a / 2 admits a simple geometrical inferpretation; the vector G is either parall-
el, or perpendicular to the segment M1Ms The last condition of (2. 1) becomes
(2.5)

8
11(6) f2(8) sint —5—=£0,  f,(0) wstin4-—g~+ lein2—g-~+ N,

The constants N, n, and N, are also known. The condition (2, 5) fails at a finite
number of points, It fails at @ =0, and at the points given by the equation

LH®R® =0

Thus we have shown that in the case in question the problem of motion of a rigid bo-
dy about a fixed point in the gravity field of two fixed centers admits a family of perio-
dic Poicaré solutions, In the generating solution we can choose arbitrarily the magnitu-
de G of the vector G, the projection I  of the vector G onthe axis
of the body, the value of the elements 0,7 and the initial instant of time,
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